Nanotube-based Sensing Skins for Crack Detection and Impact Monitoring of Structures
نویسنده
چکیده
Structural health monitoring (SHM) entails the use of structural response data to identify the existence, location, and severity of structural damage. However, damage detection is a challenging problem because damage is a local phenomenon difficult to observe using global measures of structural response. With the existence and location of damage unknown a priori, sensor strategies monitoring the structure at the component-level would require dense arrays of sensors. Alternatively, this study proposes a sensing skin that can be applied to structural surfaces to monitor the strain response of the structure and the evolution of cracks. A multilayered single wall carbon nanotube-polyelectrolyte composite thin film is proposed as a sensing skin because it is piezoresistive and can be adsorbed to metallic surfaces. Electrical impedance tomography (EIT) is used to reconstruct the distribution of the sensing skin conductivity using voltage measurements taken on the boundary of the skin when regulated electrical currents are applied. The method is capable of imaging cracks in cementitious elements in addition to impact damage in aluminum plates.
منابع مشابه
Title : Multifunctional Sensing Skins for Structural Health Monitoring for Fifth International Workshop on Structural Control and Monitoring 2008
The integrity and safety of metallic structures can be jeopardized by structural damage (e.g., yielding, cracking, impact, corrosion) that can occur any time. While various sensors have been proposed and validated for structural health monitoring, most sensors only provide data at a discrete point on the structure. Here, a carbon nanotube-polyelectrolyte sensing skin is proposed for monitoring ...
متن کاملLow Cost UAV-based Remote Sensing for Autonomous Wildlife Monitoring
In recent years, developments in unmanned aerial vehicles, lightweight on-board computers, and low-cost thermal imaging sensors offer a new opportunity for wildlife monitoring. In contrast with traditional methods now surveying endangered species to obtain population and location has become more cost-effective and least time-consuming. In this paper, a low-cost UAV-based remote sensing platform...
متن کاملCarbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification
Impact damage, excessive loading, and corrosion have been identified as critical and long-term problems that constantly threaten the integrity and reliability of structural systems (e.g., civil infrastructures, aircrafts, and naval vessels). While a variety of sensing transducers have been proposed for structural health monitoring, most sensors only offer measurement of structural behavior at d...
متن کاملDetection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements o...
متن کاملDesign and fabrication of a high-Q near-field probe for subsurface crack detection
Non-destructive detection and evaluation of invisible cracks in metal structures is an important matter in several critical environments including ground transportation, air transportation and power plants. In this paper, a high-Q near-field Microwave probe is designed and fabricated using defected ground structures for surface and subsurface crack detection in metal structures. For this purpos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009